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ABSTRACT

This research explores the use of Conditional Variational Autoencoders (CVAEs) for text-to-image
generation, focusing on the integration of textual descriptions with visual outputs. We trained three
models using the Fashion-MNIST and MS-COCO datasets, leveraging architectures such as CLIP
and Seq2Seq with Gated Fusion to conditionally generate images based on both simple labels and
detailed captions. While the models demonstrated the ability to capture high-level semantic features
and generate contextually relevant images, limitations were observed in producing fine-grained de-
tails and sharpness, especially when conditioned solely on text. Additionally, the project was con-
strained by access to computational resources, limiting opportunities for more extensive experimen-
tation and fine-tuning. This work provides a foundational exploration of text-to-image generation
and highlights challenges and potential improvements for future research in this area.

1 INTRODUCTION

1.0.1 CONDITIONAL VARIATIONAL AUTOENCODER (CVAE)

This research project focuses on developing a CVAE capable of generating images from textual descriptions. The
primary goal is to train a generative model that can transform both short-form labels and longer narrative inputs into
corresponding visual representations.

The CVAE1 extends the traditional VAE by incorporating conditioning information (e.g., textual prompts) into both the
encoding and decoding processes, enabling targeted image generation aligned with specific inputs. This conditioning
enhances the model’s ability to produce outputs tailored to the provided context.

The encoder processes input data x and conditional information c (e.g., class labels) to parameterize a latent space
distribution, typically a Gaussian with mean µ and variance σ2. Using the reparameterization trick, the latent variable
z is sampled as:

z = µ+ σ ⊙ ϵ,

where ϵ is noise sampled from a standard normal distribution, enabling backpropagation through the stochastic process.
The decoder combines z and c to reconstruct the output x′, conditioned on c. The generative process is modeled as:

x′ ∼ pθ(x|z, c),
where pθ denotes the probability of generating x′ given z and c. The CVAE minimizes a combined loss function; the
Kullback-Leibler divergence regularizes the latent space to align with a Gaussian prior, while the reconstruction loss
ensures the output x′ resembles x, conditioned on c.

We begin with training the conditional VAE on the Fashion-MNIST dataset, which provides a foundational under-
standing of generating images from basic textual labels. We then move to the more complex and diverse COCO
dataset, leveraging advanced text feature extraction techniques to handle longer text descriptions.

1.0.2 A BRIEF OVERVIEW OF FUSION METHODS

This project explores feature fusion techniques (Pulapakura (2023)) to integrate textual and visual components effec-
tively. Strategies such as additive, concatenative, and gated fusion mechanisms are evaluated to enhance the model’s
ability to translate linguistic nuances into coherent visual outputs. Fusion optimizes the interaction between textual
and visual inputs, ensuring vivid and accurate image generation.

The gated fusion mechanism operates as follows:
1Sohn et al. (2015)
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• Input Features:
– Latent Image Features (zimage): Encoded by the image encoder and sampled from the VAE’s latent

distribution.
– Textual Features (ztext): Encoded by a pretrained text model (e.g., CLIP) and projected into the same

feature space as zimage.
• Fusion Process:

– Concatenation: Combines zimage and ztext into a joint feature vector.
– Gating Layer: A sigmoid function outputs weights (g) to balance the contributions of each modality:

g = σ(Wg · [zimage, ztext] + bg)

– Weighted Combination: The fused feature is computed as:

zfused = g · zimage + (1− g) · ztext

• Decoding: The fused feature (zfused) is passed to the decoder for final image generation.

2 METHODOLOGY AND MODEL ARCHITECTURE

Each model we employ, uses a slightly modified version of the CVAE structure outlined above. We lay out the specifics
down below:

2.1 FASHION-MNIST MODEL

The Fashion-MNIST dataset from Xiao et al. (2017) comprises two segments: a training set with 60,000 images and
a test set consisting of 10,000 images. Each image in the dataset is a grayscale bitmap of 28 by 28 pixels, categorized
into one of ten fashion-related classes2 , ranging from everyday apparel to footwear. Each image in Fashion-MNIST is
encoded into a 784-pixel vector, where each pixel is represented by an integer ranging from 0 (white) to 255 (black),
depicting the intensity of darkness.

Figure 1: Fashion MNIST Sample Image (Encoding of Pixel Values)

In our implementation:

• Encoder: The encoder combines the image data (x) with a conditional input (c) using fully connected layers.
A ReLU activation after the first layer fc1 introduces non-linearity, which captures complex interactions
between the image features and the conditional input. Linear layers (fc2 mean and fc2 logvar) map features
to the latent space, producing mean and log-variance parameters for the reparameterization trick.

• Decoder: The decoder reconstructs the input (x) by conditioning on the latent variable (z) and conditional
input (c). The combined representation of z and c is processed through a fully connected layer with ReLU
activation to model complex interactions. A final layer with a sigmoid activation ensures the output lies
within [0, 1], making it suitable for image reconstruction tasks.

2See Table A in the Appendix for a detailed list of classes.

2



ECE 685 Final Project

• Training process: Training is performed over 40 epochs using the Adam optimizer. Each training batch
involves preprocessing steps such as flattening and rescaling images, generating one-hot embeddings for the
labels, and performing forward passes to compute the loss. The total loss is composed of a reconstruction
error and the KL divergence, defined as:

L = Eq(z|x,c)[log p(x|z, c)]− KL(q(z|x, c)∥p(z)).

Gradients are calculated via backpropagation, parameters are updated, and the average loss is logged per epoch. This
ensures the CVAE captures data variability and generates outputs conditioned on specific attributes, making it suitable
for our controlled image synthesis task.

Figure 2: CVAE Model Architecture [modified from Ribeiro et al. (2024)]

2.2 COCO DATASET: MODEL 1 USING CLIP

The model architecture integrates a Conditional Variational Autoencoder (CVAE) with OpenAI’s CLIP model (ViT-
B/32) (Radford et al. (2021)) for text-to-image generation. It utilizes the COCO 2014 dataset from Lin et al. (2014),
containing 83k images with approximately five captions per image, expanded into 415k unique image-caption pairs.
Captions are encoded into 512-dimensional vector embeddings using CLIP, which act as the conditional inputs for the
CVAE. Images are preprocessed to 224× 224 resolution and converted to RGB format to ensure consistency.

Figure 3: COCO-17 Dataset Sample Image (Dectection and Segmentation)

The model comprises three main components: an image encoder, a main encoder, and a decoder.

• Image Encoder: The image encoder uses convolutional layers to reduce the spatial dimensions of the input
(224 × 224 × 3) while increasing the number of feature maps. Each convolutional layer is followed by
batch normalization to stabilize training and a LeakyReLU activation function (slope = 0.1) to introduce non-
linearity. The final feature map (14 × 14 × 512) is flattened and passed through a fully connected layer to
produce a compact 512-dimensional representation.
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• Text Encoder: The main encoder concatenates the 512-dimensional image embedding with the 512-
dimensional caption embedding. This combined input is processed through a series of fully connected layers,
each followed by LeakyReLU activations, to reduce the data to a 128-dimensional latent representation.

• Decoder: The decoder then combines this latent representation with the caption embedding, resulting in a
640-dimensional vector. This vector is passed through a fully connected layer, reshaped into a 512 × 7 × 7
feature map, and upsampled to the original image dimensions (224×224×3) using transposed convolutional
layers.

The model is trained using a reconstruction loss that combines binary cross-entropy and KL divergence. Training is
performed with the Adam optimizer, using a learning rate of 5×10−3 and weight decay of 10−5, over 200 epochs. This
architecture effectively leverages caption embeddings to conditionally control the generated images while maintaining
variability through the CVAE framework, making it suitable for high-quality text-to-image generation tasks.

2.3 COCO DATASET: MODEL 2 SEQ2SEQ WITH GATED FUSION

The model employs a Seq2Seq learning framework with gated fusion for multimodal integration, leveraging a subset of
the MS-COCO dataset containing 7,000 images paired with five captions each, resulting in 35,000 training samples. At
a high level: the Seq2Seq model uses an encoder-decoder structure to map input sequences to outputs. In this project,
gated fusion integrates text and image features within the Seq2Seq framework, fine-tuning it to encode captions into
512-dimensional semantic feature vectors. These vectors condition the image generation process within the CVAE
framework to produce visually coherent images from textual descriptions. The structure of our model is as follows:

• Image Encoder: The image encoder consists of two convolutional layers: the first with 64 filters and the
second with 128 filters, both using a 4× 4 kernel, stride of 2, and padding of 1. These layers capture hierar-
chical spatial features, and the output is flattened and passed through fully connected layers to parameterize
the latent distribution with mean and log variance vectors. The encoder compresses the visual input into a
compact yet descriptive 128-dimensional latent space representation.

• Text Encoder: The text encoder processes captions using a pre-trained T5-small transformer. Captions are
transformed into 512-dimensional feature vectors by averaging the hidden states from the transformer’s final
layer. This allows the model to retain rich semantic information from the captions, ensuring the textual inputs
effectively condition the image generation process.

• Gated Fusion Module: The multimodal integration is handled by a gated fusion module that combines the
512-dimensional text features with the 128-dimensional latent features from the image encoder. A gating
mechanism with a sigmoid activation function dynamically adjusts the contributions of text and image fea-
tures, ensuring a balanced and aligned integration of both modalities. This mechanism enhances the ability
of the model to generate reconstructions that align well with both inputs.

• Decoder: The decoder reconstructs the final image by first reshaping the fused latent representation into a
high-dimensional feature map through a fully connected layer. Transposed convolutional layers progressively
upsample the feature map to recreate the spatial dimensions of the original image (224 × 224 × 3). A final
tanh activation function scales the pixel values to the range [−1, 1].

The model is trained using a weighted loss function combining MSE for reconstruction accuracy and KL divergence
to regularize the latent space. Training is optimized using the Adam optimizer with a learning rate of 10−3.

3 RESULTS AND DISCUSSION

3.1 FASHION-MNIST: GENERATIVE IMAGE SYNTHESIS FROM SHORT-FORM TEXTUAL LABELS

3.1.1 RECONSTRUCTION RESULTS

To evaluate the model’s ability to learn meaningful latent representations, we visualized reconstructed images along-
side their original counterparts. Using the trained CVAE, a batch of test images was flattened, combined with one-hot
label embeddings, and passed through the Encoder and Decoder to generate reconstructions. The reconstructed images
were then plotted against the original inputs for direct comparison (Figure 4) 4.

As shown in the figure, the CVAE successfully captures the overall structure and distinguishing features of the original
inputs, such as the general shape and outline of the objects. However, the reconstructions exhibit some blurriness,
which indicates potential room for improvement in capturing fine-grained details.
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Figure 4: Reconstruction Quality Assessment

3.1.2 GENERATION RESULTS

To evaluate the CVAE’s ability to generate images conditioned on specific labels, we sampled latent variables and
combined them with text embeddings corresponding to predefined categories such as “sneaker,” “boot,” “top,” and
“handbag.” The model then generated images based on this input, which were visualized in rows for each label (Figure
5) 5.

Figure 5: Generated images conditioned on specific labels (‘sneaker,’ ‘boot,’ ‘top,’ ‘handbag’)

As shown in the figure, the CVAE successfully generates images that align with the intended categories, capturing
the overall structure and recognizable features of the specified objects. However, the generated images exhibit some
variability in quality and detail, particularly in fine-grained features like texture. This highlights the model’s potential
for conditional image synthesis while suggesting areas for improvement in generating sharper, more detailed outputs.

3.2 COCO DATASET: IMAGE GENERATION THROUGH TEXTUAL NARRATIVE SUMMARIZATION

3.2.1 MODEL 1 RESULTS USING CLIP

After 200 epochs of training, the CVAE demonstrates its ability to generate images from noise and captions, though
the outputs are still somewhat abstract. Below are examples of generated images with corresponding captions:

• Caption 1: a futuristic cityscape with flying cars and neon-lit buildings

• Caption 2: a serene beach with clear water and swaying palm trees
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• Caption 3: a majestic tiger walking through a sunlit jungle
• Caption 4: a cozy cabin in a snowy forest with glowing lights
• Caption 5: a robot chef cooking a colorful gourmet dish in a high-tech kitchen

Figure 6: Generated images using the CVAE decoder

The figure below illustrates examples from the training process:

Figure 7: Images generated with the full model vs. the decoder using caption embedding and noise

The top row shows the original images from the dataset. The middle row contains images generated by passing the
original images and caption embeddings through the full CVAE model. The bottom row depicts images generated
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solely from the caption embeddings. These examples highlight that the CVAE can approximate the original images
when both image and caption embeddings are provided. However, the model struggles to generate coherent visu-
als when conditioned only on captions. This limitation likely stems from the pixel-wise reconstruction loss, which
minimizes the error between individual pixel values but overlooks higher-level features critical for perceptual realism.

To address these limitations, incorporating a perceptual loss function could improve image quality. Unlike pixel-
wise reconstruction loss, perceptual loss evaluates differences in high-level feature representations extracted from
pre-trained models like VGG. This approach encourages the model to focus on structural and semantic similarities,
resulting in more visually realistic and coherent reconstructions.

Next, we evaluate the CVAE’s ability to generate images based on captions not encountered during training.

Figure 8: Generated images from unseen captions

The model demonstrates an ability to capture high-level semantic information, as seen in the following examples:

• The first two captions include only the word “orange,” resulting in images that prominently feature orange
hues.

• The third caption incorporates “orange” and “yam,” leading to similar color themes in the generated images.

• The final caption contains the word “other,” which could explain why the corresponding image exhibits less
orange coloration.

These results suggest that the model is sensitive to specific keywords in the captions, influencing the color and thematic
elements of the generated images. With additional training and refinement, the model holds potential for generating
higher-quality and more diverse images.

3.2.2 MODEL 2 RESULTS USING SEQ2SEQ WITH GATED FUSION

The results illustrate the progression of the Conditional-VAE model’s ability to generate contextually relevant images
from textual descriptions. After 40 epochs, the model’s outputs for the caption “A car at a town centre” reveal its initial
learning phase. While the generated samples capture some coarse features related to the input caption, such as vague
urban-like shapes and muted color tones, the images are highly blurry and lack sharp details. This stage reflects the
model’s ongoing struggle to balance the integration of textual and visual modalities, with the latent space yet to fully
capture meaningful representations of the input data.

Figure 9: COCO M2, Generated images from captions (epoch= 40)
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In contrast, the results after 100 epochs for captions such as “A beautiful landscape with mountains and a lake”, “A
black car”, and “An orange tree” demonstrate significant improvements. The generated images align more closely
with the descriptions, as evident in the landscape outputs, which feature discernible patterns of greenery and sky, and
the orange tree outputs, where distinct orange hues emerge prominently. However, even after extended training, the
images remain somewhat blurry, highlighting the model’s challenge in achieving pixel-level sharpness. These results
suggest that while the Conditional-VAE effectively bridges text and image modalities, further enhancements, such as
incorporating perceptual losses or fine-tuning the architecture, could improve the quality and detail of the generated
outputs.

Figure 10: COCO M2, Generated images from captions (epoch= 100)

4 CONCLUSION

This research demonstrates the potential of Conditional Variational Autoencoders (CVAEs) for text-to-image synthe-
sis, effectively bridging textual descriptions and visual outputs. Using the Fashion-MNIST and MS-COCO datasets,
the models showcased an ability to capture high-level semantic features and generate contextually relevant images.
Techniques like CLIP and Seq2Seq with Gated Fusion enhanced the integration of text and image modalities, allow-
ing for richer and more precise image generation. However, challenges remain, including the blurriness and lack of
fine-grained details in generated images, particularly for complex captions. Limited computational resources further
constrained the scope of experimentation, restricting opportunities for extensive hyperparameter tuning and model
refinement.

Future work could explore the use of perceptual loss functions to improve the realism and coherence of generated
images by focusing on high-level structural features rather than pixel-wise accuracy. Incorporating larger, more diverse
datasets and leveraging advanced architectures like diffusion models or transformer-based generators may also enhance
the quality and diversity of outputs. Additionally, deploying distributed or cloud-based computational frameworks
could help overcome resource limitations, enabling more extensive training and evaluation. This work provides a
foundational exploration of text-to-image synthesis and highlights key areas for further research and development.
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A APPENDIX

Table A: Labels for Fashion-MNIST Dataset

Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot
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